
Eulerian Paths and 
Cycles



What is a Eulerian Path

 Given an graph.

 Find a path which uses every edge exactly 

once.

 This path is called an Eulerian Path.

 If the path begins and ends at the same 

vertex, it is called a Eulerian Cycle. 



Where did all start: Koningsberg



Koningsberg
Find a route which crosses each bridge exactly once?



Koningsberg Graph

This graph 

represents the 

Koningsburg bridges



When do Eulerian Paths and Cycles 
exist?

 Euler’s solution

 An Eulerian cycle exists if and only if it is 
connected and every node has ‘even degree’.

 An Eulerian path exists if and only if it is 
connected and every node except two has even 
degree.

 In the Eulerian path the 2 nodes with odd degree 
have to be the start and end vertices



Proof: a Eulerian graph must have all 
vertices of even degree

 Let C be an Eulerian cycle of graph G, which starts and 
ends at vertex u.

 Each time a vertex is included in the cycle C, two edges

connected to that vertex are used up.

 Every edge in G is included in the cycle. So every vertex

other than u must have even degree.

 The tour starts and ends at u, so it must also have even

degree.



Proof: a graph with all vertices of even 
degree must be Eulerian

 Assume the opposite: G is a non-eulerian graph with all

vertices of even degree.

 G must contain a cycle. Let C be the largest possible

cycle in the graph.

 Because of our assumption, C must have missed out some

of the graph G, call this D.

 C is Eulerian, so has no vertices of odd degree. D

therefore also has no vertices of odd degree.

 D must have some cycle E which shares a common vertex 
with C 

 Combination of C and E therefore makes a cycle larger than 
C, which violates our assumption in (2). Contradiction.



Examples

Eulerian Cycle:

Eulerian Path:



And Koningsburg?

 No Eulerian Path or cycle!



Finding Eulerian Cycles 

 Start off with a node

 Find a cycle containing that node

 Find a node along that path which has an edge that has not 
been used

 Find a cycle starting at this node witch uses the unused edge

 Splice this new cycle into the existing cycle

 Continue in this way until no nodes exist with unused edges

 Since the graph is connected this implies we have found a 
Eulerian Cycle



Formal Algorithm

 Pick a starting node and recurse on that node. At 
each step: 
 If the node has no neighbors, then append the node to the 

circuit and return

 If the node has a neighbor, then make a list of the 
neighbors and process them until the node has no more 
neighbors

 To process a neighbour, delete the edge between the 
current node and its neighbor, recurse on the neighbor

 After processing all neighbours append current node to 
the circuit.



Pseudo-Code
 find_circuit (node i)

if node i has no neighbors

circuit [circuitpos] = node i

circuitpos++

else

while (node i has neighbors)

pick a neighbor j of node i

delete_edges (node j, node i)

find_circuit (node j)

circuit [circuitpos] = node i

circuitpos++



Execution Example

 Stack: 

 Location: 

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 

 Location: 

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 

 Location: 1

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 

 Location: 1

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 1

 Location: 4

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4

 Location: 2

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2

 Location: 5

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5

 Location: 1

 Circuit: 

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2

 Location: 5

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5

 Location: 6

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6

 Location: 2

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2

 Location: 7

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7

 Location: 3

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7 3

 Location: 4

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7 3 4

 Location: 6

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7 3 4 6

 Location: 7

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7 3 4 6 7

 Location: 5

 Circuit: 1

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7 3 4 6

 Location: 7

 Circuit: 1 5

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7 3 4

 Location: 6

 Circuit: 1 5 7

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7 3

 Location: 4

 Circuit: 1 5 7 6

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2 7

 Location: 3

 Circuit: 1 5 7 6 4

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6 2

 Location: 7

 Circuit: 1 5 7 6 4 3

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5 6

 Location: 2

 Circuit: 1 5 7 6 4 3 7

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2 5

 Location: 6

 Circuit: 1 5 7 6 4 3 7 2

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4 2

 Location: 5

 Circuit: 1 5 7 6 4 3 7 2 6

1

2

3

4

5

6

7



Execution Example

 Stack: 1 4

 Location: 2

 Circuit: 1 5 7 6 4 3 7 2 6 5

1

2

3

4

5

6

7



Execution Example

 Stack: 1

 Location: 4

 Circuit: 1 5 7 6 4 3 7 2 6 5 2

1

2

3

4

5

6

7



Execution Example

 Stack: 

 Location: 1

 Circuit: 1 5 7 6 4 3 7 2 6 5 2 4

1

2

3

4

5

6

7



Execution Example

 Stack: 

 Location: 

 Circuit: 1 5 7 6 4 3 7 2 6 5 2 4 1

1

2

3

4

5

6

7



Analysis

 To find an Eulerian path, find one of the 

nodes which has odd degree (or any node 

if there are no nodes with odd degree) and 

call find_circuit with it.

 This algorithm runs in O(m + n) time, where 

m is the number of edges and n is the 

number of nodes, if you store the graph in 

adjacency list form.




